Briefing Clima Espacial

30/05/2022

1 Sol

1.1 Responsável: José Cecatto

23/05 – Sem flare M/X; Vento solar rápido (≤ 550 km/s); 7 CME p.t.c. para a Terra;

24/05 – Sem flare M/X; Vento solar rápido (<< 450 km/s; 3 CME p.t.c. para a Terra $^{\ast};$

 $25/05-{\rm Flare}$ M1; Sem vento rápido; 19 CME p.t.c. para a Terra*,*,*;

EMBRACE

26/05 – Sem flare M/X; Sem vento rápido; 4 CME p.t.c. para a Terra;

27/05 – Sem flare M/X; Vento solar rápido (<= 500 km/s); 2 CME p.t.c. para a Terra;

28/05 – Sem flare M/X; Vento solar rápido (<= 600 km/s); 7 CME p.t.c. para a Terra *,*;

29/05 – Sem flare M/X; Vento solar rápido (<= 550 km/s); 6 CME p.t.c. para a Terra;

30/05 – Sem flare M/X; Vento solar rápido (<= 600 km/s); 2 CME p.t.c. para a Terra;

Prev.: Vento solar rápido até 31 de maio; muito baixa probabilidade de "flares" (01% M, 01% X) nos próximos 02

dias; eventualmente outras CME podem ter componente dirigida para a Terra.

 ${\rm p.t.c.}$ – ${\rm pode(m)}$ ter componente; * halo parcial; ** halo

END

2 Sol

2.1 Responsável: Douglas Silva

- EMC (https://ccmc.gsfc.nasa.gov/donki/):
- WSA-ENLIL (Ejeções de Massa Coronal (EMCs) 2022-05-21T00:12Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançara a missão DSCOVR entre 2022-05-24T04:00Z e 2022-05-24T18:00Z.
- WSA-ENLIL (Ejeções de Massa Coronal (EMCs) :2022-05-23T12:36Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançara a missão DSCOVR entre 2022-05-28T08:30Z e 2022-05-28T22:30Z.
- WSA-ENLIL (Ejeções de Massa Coronal (EMCs) : 2022-05-25T18:38Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançara a missão DSCOVR entre 2022-05-27T22:00Z e 2022-05-28T12:00Z.

Coronal holes (SPOCA):

Figura: The solid line in black shows the products of the sum of areas for each detection interval performed by SPOCA between May 23 and 30, 2022.

Figura: Above the 193 Å image of the Sun are highlighted coronal holes observed by SPOCA around 00:00 UT on May 25, 2022.

うせん 御 ふゆや ふゆ ふしゃ

くりょう 山田 ふかん 山下 ふしゃ

3 Meio Interplanetário

3.1 Responsável: Paulo Jauer

EMBRACE

Resumo dos índices do meio interplanetário

Máximos diários - mais recentes entre 23 Mai, 2022 e 30 Mai, 2022

- A região do meio interplanetário na última semana apresentou um nível baixo a moderado nas perturbações do plasma devido à possível interação de estruturas do tipo CME e HSS identificadas pelo satélite DISCOVR no meio interplanetário.
- O módulo da componente do campo magnético interplanetário apresentou 1 pico máximo no dia 27/Mai às 11:30 de \sim 13.9 nT.
- As componentes Bx/By apresentaram variações no período analisado, mantendo-se ambas oscilando dentro do intervalo [+10, -10] nT, com troca de setor no dia 27/Maio às 10:30.
- A componente do campo Bz apresentou flutuações oscilando majoritariamente em torno de zero até próximo ao dia 27/Maio. Após, a componente Bz oscilou em média negativa até o inicio do dia 30 de maio.
- A densidade do vento solar apresentou um pico no dia 27/Maio às 09:30 de 42 p/cm³.
- A velocidade do vento solar esteve oscilando em média acima de 400 km/s, apresentando valor mínimo no dia 27/Maio às 02:30 de 297 km/s e valor máximo às 13:30 no dia 30 de Maio de 573 km/s.
- A posição da magnetopausa esteve oscilando em média em torno das posições típicas de 10 Re. Apresentou compressão significativa no dia 27/Maio às 11:36 de 7.63 Re .

4 Cinturões de Radiação

4.1 Responsável: Ligia Alves da Silva

EMBRACE

Figura 1: Fluxo de elétrons de alta energia (> 2MeV) obtido a partir dos satélites GOES-16 e GOES-17. Fonte: https://www.swpc.noaa.gov/products/goes-electron-flux

Figura 2: Dados de fluxo de elétrons de alta energia (reais e interpolados) obtidos a partir dos satélites ARASE, GOES-16, GOES-17. Dados reanalisados a partir do VERB code e do fluxo de elétrons interpolados. Dados da velocidade do vento solar e densidade de prótons obtidos a partir do satélite ACE. Fonte: https://rbm.epss.ucla.edu/realtime-forecas

O fluxo de Elétrons de alta energia (>2 MeV) na borda do cinturão de radiação externo obtidos a partir do satélite geoestacionário GOES-16 e GOES-17 (Figura 1) apresenta-se próximo a 10^3 partículas/ (cm^2ssr) nos dias 24-26 de maio, apresentando dois "dropouts leves e rápidos nos dias 25 e 26 de maio, seguidos de recuperação de fluxo. No dia 27/maio observa-se uma diminuição significativa de fluxo de elétrons, que inicialmente está sob influência de uma ejeção de massa coronal. Um aumento rápido é observado por volta das 12:00 UT do dia 27/maio, seguido de uma diminuição que persiste até meados do dia 29/maio. Um aumento de fluxo de elétrons é observado a partir das 15:00 UT ultrapassa valores de 10^3 partículas/ (cm^2ssr) .

Os dados dos satélites ARASE, GOES-16 e GOES-17 são analisados e interpolados para que a variabilidade do fluxo de elétrons de alta energia (1 MeV) seja observada em todo o cinturão externo de

radiação (Figura 2). Adicionalmente o VERB code reconstrói este fluxo considerando a difusão radial por ondas Ultra Low Frequency (ULF). A simulação (VERB code) mostra que a primeira diminuição de fluxo de elétrons observada no dia 27/maio atingiu L-shell > 5.5, enquanto a segunda diminuição atingiu L-shell > 3.5. Estas variabilidades no fluxo de elétrons ocorreram concomitantes a chegada de estruturas do vento solar e atividades de ondas ULF. Contudo, é importante salientar que os dados do satélite ARASE não estão disponíveis para a semana em análise, para confirmação do nível de L-shell destas variabilidades no fluxo de elétrons.

5 Ondas ULF

5.1 Responsável: José Paulo Marchezi

Figura 3: a) sinal do campo magnético total medido na Estação ISLL da rede CARISMA em cinza, junto com a flutuação na faixa de Pc5 em preto. b) Espectro de potência wavelet do sinal filtrado. c) Média da potência espectral nas faixas de 2 a 10 minutos (ondas ULF).

Figura 4: a) sinal do campo magnético total medido na Estação SMS da rede EMBRACE em cinza, junto com a flutuação na faixa de Pc5 em preto. b) Espectro de potência wavelet do sinal filtrado. c) Média da potência espectral nas faixas de 2 a 10 minutos (ondas ULF).

00:00 - 30 UTC 00:00 - 30 LT 00:00 - 31 UTC 00:00 - 31 LT

EMBRACE

10

00:00

Figura 5: a) sinal do campo magnético total medido pelo satélite GOES 16, junto com a flutuação na faixa de Pc5 em preto. b) Espectro de potência wavelet do sinal filtrado. c) Média da potência espectral nas faixas de 2 a 10 minutos (ondas ULF).

00:00

Durante semana, observamos uma atividade localizada de curta duração no dia 23 de maio - observada principalmente em altas latitudes. A partir do dia 27 de maio há um aumento na atividade de ondas ULF, iniciando com impulsos súbitos e mantendo a atividade continuamente até meados do dia 28 de maio. Essa atividade é observada desde altas latitudes, até baixas latitudes e pelo satélite GOES. Possivelmente associado a interação de uma estrutura complexa do vento solar com a magnetosfera da Terra. Sumário 9/10 Durante semana, observamos uma atividade localizada de curta duração no dia 23 de maio - observada principalmente em altas latitudes. A partir do dia 27 de maio há um aumento na atividade de ondas ULF, iniciando com impulsos súbitos e mantendo a atividade continuamente até meados do dia 28 de maio. Essa atividade é observada desde altas latitudes, até baixas latitudes e pelo satélite GOES. Possivelmente associado a interação de uma estrutura complexa do vento solar com a magnetosfera da Terra.

6 Ondas EMIC

6.1 Responsável: Claudia Medeiros

7 Ionosfera

7.1 Responsável: Laysa Resende

Boa Vista:

- Ocorreu spread-F todos os dias da semana.
- As camadas Es atingiram a escala de 3 e 4 durante a semana.

EMBRACE - Digital Ionosonde

Cachoeira Paulista:

- Não ocorreu spread-F nesta semana.
- As camadas Es dessa região atingiram a escala 2 nesta semana.

EMBRACE – Digital lonosonde

São Luís:

- Ocorreu spread -F durante toda a semana.
- As camadas Es dessa região atingiram a escala 4 no dia 25 e 26.

EMBRACE

(

8 Cintilação

8.1 Responsável: Siomel Savio Odriozola

Neste reporte sobre o índice de cintilação S4, foram apresentados dados das estações SLMA em São Luiz/MA, STSN em Sinop/MT, STNT em Natal/RN e SJCE em São José dos Campos/SP. O índice S4 acompanha a presença de irregularidades na ionosfera quando elas têm uma escala espacial ~ 360 m. A estação SLMA apresentou valores do S4 inferiores a 0.2 durante toda a semana. Por outro lado, STSN teve um comportamento muito similar durante a manhã dos dias 25 e 26 (Figura 1). Isto indica uma causa não geofísica no que respeita aos valores do S4 nestes dois dias medidos em STSN. Cintilação forte e moderada foi registrada em STNT durante as últimas horas da noite nos dias 23/05 e 27/05 respectivamente. No dia 27/05, valores do S4 > 0.5 foram registrados durante o mesmo intervalo temporal em SJCE. A Figura 2 mostra um mapa com os valores do azimute, inclinação e valores do índice S4 para a os satélites da constelação GPS que foram medidos desde STNT e SJCE tendo valores do S4 acima de 0.15 e inclinações > 25°. É possível conferir que o maior aporte aos altos valores do S4 origina-se desde a direção nordeste.

Figure 1: S4 index values for the GPS constellation measured at STSN on 05/25 (upper panel) and 05/26 (lower panel) between 1200-2200 UT.

0.3

0.20

0.3

100

120

.

G17•

G19

160

G29

••

G12.

G2425 •

200

260

240

Figure 2: Sky-map of the S4 index for the GPS constellation as observed by the STNT station (upper panel) and the SJCE station (lower panel) between 2200-0300 UT on 05/27.

180

9 Imageador All-Sky

EMBRACE

9.1 Responsável: LUME

All-Sky Imager EPBs Observation Observações das EPBs por meio do imageador All-Sky May 22 - 28, 2022 || 22 - 28 de maio, 2022

<u>()</u>

Obser	vatory	May 22	May 23	May 24	May 25	May 26	May 27	May 28
Observatório		maio 22	maio 23	maio 24	maio 25	maio 26	maio 27	maio 28
CA		√∿℃	√∿℃	✓҇҇҇	√ ∿€	√∿€	✓҇҇҇	√ ℃»₩((
BJL		×	×	×	×	×	×	×
СР		√ ₩(√ ₩C	√ ₩C	√ ₩C	√ ℃>₩(√ ℃} * (√ ₩C
SMS		√ ₩(√ ₩C	√ ∿€	✓҇҇С	√ 1111 C	✓҇҇С	🗸 🗤 🕻
Definition of Symbols								
CA	São João do Cariri							
BJL	Bom Jesus da Lapa							
CP	Cachoeira Paulista							
SMS	São Martinho da Serra							
1	Observation - Observação							
×	No Observation - Sem Observação							
0	Clear sky - Céu limpo							
m -	Partly Cloudy - Parcialmente Nublado							

- No observatório de São João do Cariri, não foi observado nenhum fenômeno geofísico durante o período.
- No observatório de Bom de Jesus da Lapa, não houve observação devido a problemas técnicos.
- No observatório de Cachoeira Paulista, não foi observado nenhum fenômeno geofisico durante o período.
- Por fim, no observatório de São Martinho da Serra, não foi observado nenhum fenômeno geofísico durante o período.

TEC

• Não foram observadas bolhas de plasma durante todo o período. Como a sazonalidade de bolhas está no fim, as bolhas apresentam dimensões espaciais pequenas e ficam difíceis de observar no mapas de TEC. O que foi observado em todos os dias é a anomalia equatorial.