

Briefing Clima Espacial

27/06/2022

1 Sol

Responsável: José Cecatto 1.1

```
20/06 - Sem flare M/X; Vento solar rápido (=< 650 km/s); 2 CME p.t.c. para a Terra;
21/06 - Sem flare M/X; Vento solar rápido (=< 550 km/s); 5 CME p.t.c. para a Terra;
22/06 - Sem flare M/X; Vento solar rápido (=< 500 km/s); 6 CME p.t.c. para a Terra;
23/06 – Sem flare M/X; Vento solar rápido (=< 500 km/s); 5 CME p.t.c. para a Terra;
24/06 - Sem flare M/X; Vento solar rápido (=< 450 km/s); 4 CME p.t.c. para a Terra;
25/06 - Sem flare M/X; Vento solar rápido (=< 500 km/s); 2 CME p.t.c. para a Terra;
26/06 - Sem flare M/X; Vento solar rápido (=< 700 km/s); 8 CME p.t.c. para a Terra;
27/06 – Sem flare M/X; Vento solar rápido (=< 650 km/s); Sem CME para a Terra;
Prev.: Vento solar rápido até 28 de junho; baixa probabilidade de "flares" (10% M, 1% X) nos próximos
02 dias;
```

eventualmente outras CME podem ter componente dirigida para a Terra.

p.t.c. - pode(m) ter componente; * halo parcial; ** halo

2 Sol

Responsável: Douglas Silva

- EMC (https://ccmc.gsfc.nasa.gov/donki/):
- WSA-ENLIL (Ejeções de Massa Coronal (EMCs) 2022-06-19T21:53Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançara a missão DSCOVR entre 05:00 e 19:00 do dia 22-06-2022.
- WSA-ENLIL (Ejeções de Massa Coronal (EMCs) 2022-06-21T00:48Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançara a missão DSCOVR entre 2022-06-24T05:00 e 2022-06-24T19:00.

Coronal holes (SPOCA): Area Coronal Hole ch. TOTAL CH. 35748 CH. 35836 CH. 35836 CH. 35896 CH. 35896

Figura: The solid line in black shows the products of the sum of areas for each detection interval performed by SPOCA between June 16 and 24, 2022.

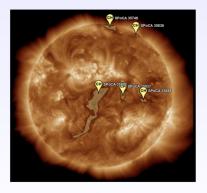
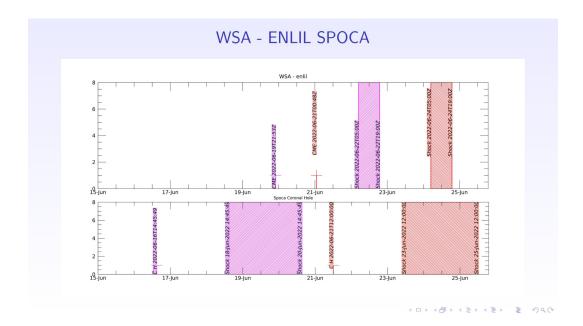
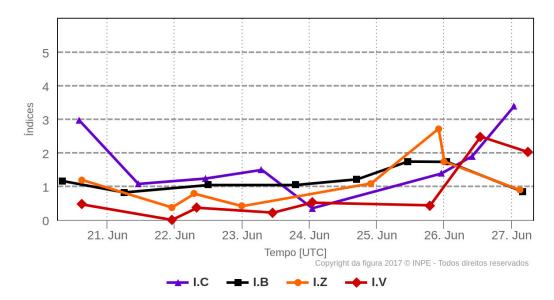



Figura: Above the 193 Å image of the Sun are highlighted coronal holes observed by SPOCA around 14:45 UT on June 16, 2022.



3 Meio Interplanetário

3.1 Responsável: Paulo Jauer

Resumo dos índices do meio interplanetário

Máximos diários - mais recentes entre 20 Jun, 2022 e 27 Jun, 2022

- A região do meio interplanetário na última semana apresentou um nível baixo a moderado nas perturbações do plasma devido à possível interação de estrutura do tipo CIR e HSS identificadas pelo satélite DISCOVR no meio interplanetário.
- O módulo da componente do campo magnético interplanetário apresentou 1 pico máximo no dia 25/junho às 11:30 de ~ 13.2 nT.
- As componentes BxBy apresentaram variações no período analisado, mantendo-se ambas oscilando dentro do intervalo [+11, -11] nT, com a presença de troca de setor no dia 21/Junho às 14:30 UT.
- A componente do campo bz apresentou flutuações oscilando majoritariamente no intervalo [+5,-5] nT. A componente bz apresentou uma mudança de direção no dia 24/Junho às 15:30 devido a interação de uma CIR, cujo valor de pico do IMF Bz sul registrado foi de \sim 10 nT.
- A densidade do vento solar apresentou um pico máximo no dia 27/Junho às 00:30 de 46.8 p/cm^3 , apresentou também outros picos que oscilaram abaixo de 22 p/cm^3 . A densidade permaneceu oscilando em média abaixo de 12 p/cm^3 no restante do período.
- A velocidade do vento solar teve oscilando permanecendo acima de 400 km/s durante todo o período. Apresentando pico máximo de 620 e 663 km/s no dia 20-26/Junho às 15:30 e 13:30 respectivamente.
- A posição da magnetopausa esteve oscilando em média abaixo da posição de equilíbrio. No dia 27/Junho às 01:30, apresentou uma compressão máxima de 6.9 Re. Apresentou outras duas compressões no dia 20-26/Junho às 14:30 e 10:30 UT de 7.38 e 8.3 Re respectivamente.

4 Cinturões de Radiação

4.1 Responsável: Ligia Alves da Silva

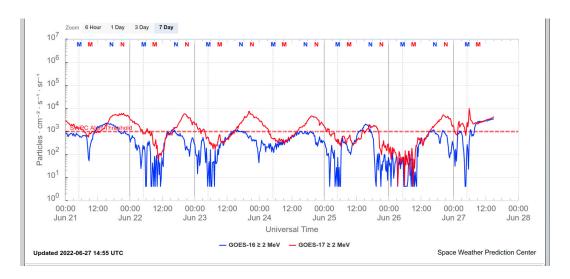


Figura 1: Fluxo de elétrons de alta energia (¿ 2MeV) obtido a partir dos satélites GOES-16 e GOES-17. Fonte: https://www.swpc.noaa.gov/products/goes-electron-flux.

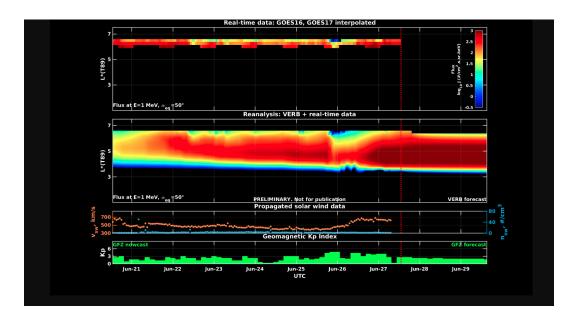


Figura 2: Dados de fluxo de elétrons de alta energia (reais e interpolados) obtidos a partir dos satélites ARASE, GOES-16, GOES-17. Dados reanalisados a partir do VERB code e do fluxo de elétrons interpolados. Dados da velocidade do vento solar e densidade de prótons obtidos a partir do satélite ACE. Fonte:https://rbm.epss.ucla.edu/realtime-forecas.

O fluxo de Elétrons de alta energia (>2 MeV) na borda do cinturão de radiação externo obtidos a partir dos satélites geoestacionários GOES-16 e GOES-17 (Figura 1) apresenta-se oscilando entre 10^4 e 10^2 partículas/ (cm^2ssr) quase todo o período analisado. Quatro diminuições de fluxo de elétrons foram observadas, mas apenas o "dropout" observado no dia final do dia 25/junho atingiu mais de duas ordens de grandeza.

Os dados dos satélites ARASE, GOES-16 e GOES-17 são analisados e interpolados para que a variabilidade do fluxo de elétrons de alta energia (1 MeV) seja observada em todo o cinturão externo de radiação (Figura 2). Adicionalmente o VERB code reconstrói este fluxo considerando a difusão radial por ondas Ultra Low Frequency (ULF). A simulação (VERB code) mostra que o "dropout" observado

no final do dia 25/junho atingiu L-shell > 3.5. Este foi seguido de um aumento de fluxo de elétrons a partir do final do dia 26/junho. As variabilidades de fluxo de elétrons ocorreram concomitantes com a chegada de estruturas do ventos solar na magnetosfera e a atividades de ondas ULF.

5 Ondas ULF

5.1 Responsável: Graziela B. D. Silva

Figura 3: a) Sinal do campo magnético total medido na Estação FCHU (Fort Churchill) da rede CA-RISMA de magnetômetros em magenta, junto com a flutuação na faixa de Pc5 em azul. b-d) sinais do campo magnético total medido nas estações ARA (Araguatins), CXP (Cahoeira Paulista) e SMS (São Martinho da Serra) da rede EMBRACE de magnetômetros em magenta, junto com as respectivas flutuações na faixa de Pc5 em preto.

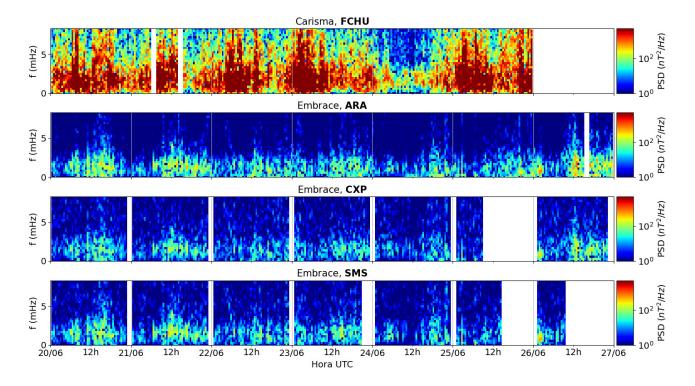


Figura 4: a-d) Densidade de potência espectral das flutuações do campo magnético total (δ Btotal) registradas a) na estação de alta latitude (FCHU-CARISMA), e b-d) nas estações de baixas latitudes da rede EMBRACE (ARA, CXP, SMS).

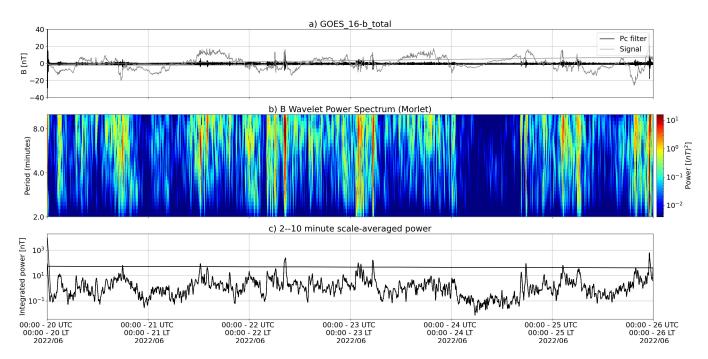
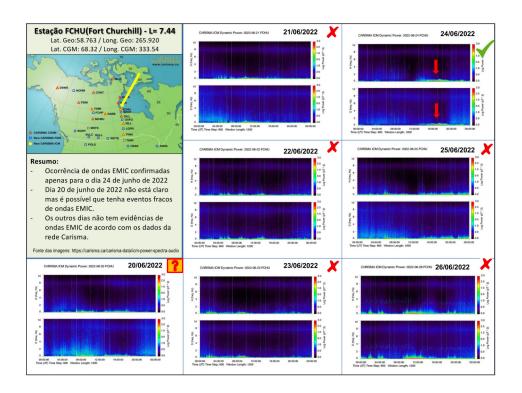


Figura 5: a) sinal do campo magnético total medido pelo satélite GOES 16, junto com a flutuação na faixa de Pc5 em preto. b) Espectro de potência wavelet do sinal filtrado. c) Média da potência espectral nas faixas de 2 a 10 minutos (ondas ULF).

• O satélite GOES 16 em órbita geossíncrona (L \sim 6.6) registrou atividade contínua moderada ou fraca de ondas ULF Pc5 durante todos os dias da semana, exceto em 24/06. A atividade das ondas ao longo da semana esteve associada principalmente à passagem de ICME no dia 22/06 e de CIR



(região corrotante de interação) em 26/06.

- Nas estações magnéticas em solo, houve atividade intensa de ondas ULF Pc5 registrada em FCHU (Fort Churchill/Canadá alta latitude) todos os dias até 25/06, e atividade bem fraca em 24/06, em concordância com os resultados do GOES.
- Não há dados disponíveis de FCHU para análise do dia 26/06 até o momento.
- Nas estações do Embrace sobre a região equatorial do Brasil, foi observada atividade contínua moderada ou fraca de ondas durante todos os dias da semana, mesmo em 24/06.
- Da comparação de resultados da potência espectral entre sinais registrados em Vassouras e Cahoeira Paulista, notou-se que os sinais de onda ULF em VSS são geralmente mais fracos, indicando certo nível de amortecimento das ondas Pc5 nesta estação.

6 Ondas EMIC

6.1 Responsável: Claudia Medeiros

7 Atividade geomagnética

7.1 Responsável: Lívia Alves

Na semana de 21 a 27/06, destacam-se os seguintes eventos relacionados a atividade geomagnética:

- Os dados provenientes da rede de magnetômetros Embrace apresentaram instabilidades durante todo o período, com destaque para 25-27/06 Os magnetômetros da rede Embrace registraram aumento seguido de queda na componente H.
- A atividade geomagnética foi instável durante todo o período, o índice AE apresentou instabilidades e atingiu 1000 nT nos dias 25-27. O índice Dst variou até -50 nT (25/06). O Kp mais alto da semana foi de 4°.
- A atividade auroral foi levemente intensificada nos dias 15 e 16/06.
- $\bullet\,$ Campo magnético medido na órbita do satélite GOES apresentou algumas instabilidades nos dias 22/06 e 25/06.

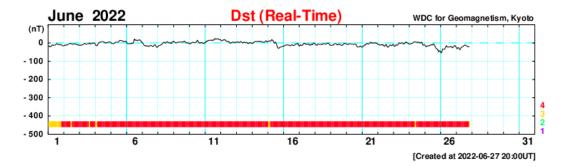


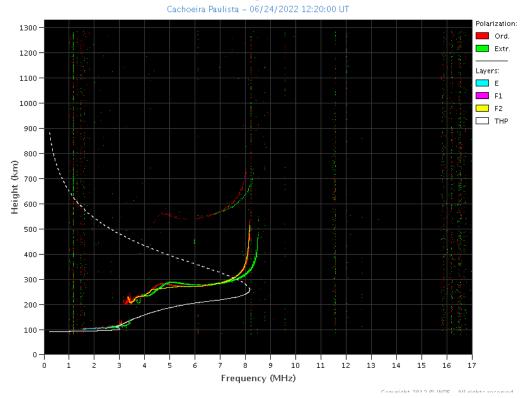
Figura 6: Evolução mensal do índice Dst.

8 Ionosfera

8.1 Responsável: Laysa Resende

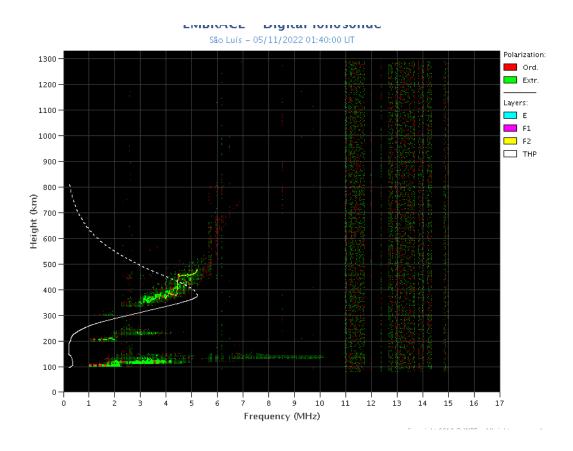
Boa Vista:

- Ocorreu spread-F entre o dia 21 e 25.
- As camadas Es atingiram a escala 5 no dia 21 de junho.


Boa Vista - 06/21/2022 22:40:00 UT 1300 Ord. 1200 1100-F1 1000 □ ТНР 900 -800 -Height (km) 600 500 400 -300 200 10 12 14 15 Frequency (MHz)

EMBRACE - Digital Ionosonde

Cachoeira Paulista:


- Não ocorreu spread-F durante a semana.
- As camadas Es atingiram a escala 2 durante a semana.

EMBRACE - Digital Ionosonde

São Luís:

- Ocorreu spread -F fraco durante a semana.
- $\bullet\,$ As camadas Es dessa região atingiram a escala 4 nos dias 20, 21 e 23 .

9 Cintilação

9.1 Responsável: Siomel Savio Odriozola

Neste reporte sobre o índice de cintilação S4, foram apresentados dados das estações SLMA em São Luiz/MA, STNT em Natal/RN, PALM em Palmas/TO e SJCE em São José dos Campos/SP. O índice S4 acompanha a presença de irregularidades na ionosfera quando elas têm uma escala espacial ~ 360 m. Durante esta semana as estações SLMA e PALM apresentaram valores do S4 inferiores a 0.3. As estações STNT e SJCE registraram valores moderados e fortes de cintilação respetivamente entre as últimas horas do dia 25/06 e as primeiras foras do dia 26/06 (Figura 1). Em se tratando de um evento de cintilação que pode estar associado ao surgimento de uma bolha de plasma fora da temporada típica destes eventos, o comportamento do meio interplanetário e os índices de atividade magnética global e aurorais, indicam como possível causa da cintilação a penetração de campo elétricos ionosféricos perturbados.

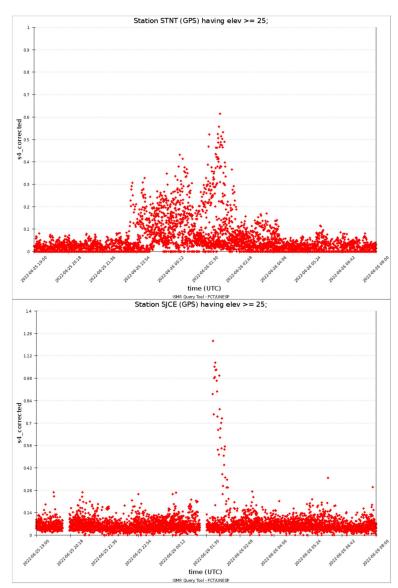


Figure 1: S4 index values for the GPS constellation measured at STNT (upper panel) and SJCE (lower panel) during the late hours of the 25/06 until the early hours of the 26/06.

10 Imageador All-Sky

10.1 Responsável: LUME

All-Sky Imager EPBs Observation Observações das EPBs por meio do imageador All-Sky June 19 - June 25, 2022 || 19 de junho - 25 de junho, 2022

Observatory		June 19	June 20	June 21	June 22	June 23	June 24	June 25
Observatório		junho 19	junho 20	junho 21	junho 22	junho 23	junho 24	junho 25
CA		√ ○ * ℂ	√ \>*(√ O*€ℂ	√11111 ** €	√ \>*(√ O*€ℂ	√ \co*(
BJL		X	X	X	Х	Х	Х	Х
CP		VO (√ ○ℂ	√ ○ℂ	√ ○ℂ	√ ○ℂ	√ ○ℂ	/ O(
SMS		√ O€	√ ○€	✓• ℂ	✓• ℂ	✓• ℂ	✓• ℂ	√ ⊙ℂ
Definition of Symbols								
CA	São João do Cariri							
BJL	Bom Jesus da Lapa							
CP	Cachoeira Paulista							
SMS	São Martinho da Serra							
1	Observação							
X	No Observation - Sem Observação							
0	Clear sky - Céu limpo							
8	Partly Cloudy - Parcialmente Nublado							
_	Charles N. H. L.							

- No observatório de São João do Cariri, foi observado um distúrbio ionosférico propagante no dia 23 de junho e bolhas de plasma no dia 25 de junho.
- No observatório de Bom de Jesus da Lapa não houve observação devido a problemas técnicos.
- No observatório de Cachoeira Paulista foi observado bolhas de plasma no dia 25 de junho.
- Por fim, no observatório de São Martinho da Serra foi observado bolhas de plasma no dia 25 de junho.

TEC

• Foi observado uma bolha de plasma entre a noite do dia 25 para o dia 26 de junho.