Briefing Clima Espacial

23/08/2022

1 Sol

1.1 Responsável: José Cecatto

15/08 – "Flares" M1.0, M2.7, M1.1; Vento solar rápido (=< 500 km/s); 9 CME p.t.c. para a Terra; 16/08 – "Flares" M5.0, M1.8; Sem vento rápido; 4 CME p.t.c. para a Terra;

17/08 – "Flares" M2.0, M1.0; Vento solar rápido (< 550 km/s); 6 CME p.t.c. para a Terra;

18/08 – "Flares" M1.3, M1.5, M1.3; Vento solar rápido (=< 600 km/s); 9 CME p.t.c. para a Terra;

19/08 – "Flare" M1.6; Vento solar rápido (< 700 km/s); 7 CME p.t.c. para a Terra;

EMBRACE

20/08 – Sem flare M/X; Vento solar rápido (=< 650 km/s); 3 CME p.t.c. para a Terra;

21/08 – Sem flare M/X; Vento solar rápido (=< 600 km/s); 4 CME p.t.c. para a Terra;

22/08 – Sem flare M/X; Vento solar rápido (=< 600 km/s); Sem CME em direção à Terra;

Prev.: Vento solar rápido esperado até 23-24 de agosto; probabilidade de "flares" (10% M, 1% X) nos próximos 2

dias; eventualmente outras CME podem ter componente dirigida para a Terra.

p.t.c. - pode(m) ter componente; * halo parcial; ** halo

2 Sol

2.1 Responsável: Douglas Silva

- EMC (https://ccmc.gsfc.nasa.gov/donki/):
- WSA-ENLIL (Ejeção de Massa Coronal (EMC) 2022-08-16T02:24Z)
 - A simulação indica que a previsão de chegada da ejeção de massa coronal ocorreu na seguinte data: Entre 2022-08-18T15:28Z e 2022-08-19T05:28Z
- WSA-ENLIL (Ejeções de Massa Coronal (EMCs) 2022-08-15T11:36Z, 2022-08-15T17:12Z)
 - A simulação indica que a previsão de chegada das ejecões de massa coronal combinadas ocorreram entre as seguintes datas: 2022-08-18T00:18Z e 2022-08-18T14:18Z.
- WSA-ENLIL (Ejeção de Massa Coronal (EMC) 2022-08-16T15:24Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançou a missão DSCOVR entre 2022-08-19T16:00Z e 2022-08-20T06:00Z.
- WSA-ENLIL (Ejeção de Massa Coronal (EMC) : 2022-08-17T14:53Z)
 - A simulação indica que a previsão de chegada da ejeção de massa coronal ocorreu na seguinte data: Entre 2022-08-19T23:35Z e 2022-08-20T13:35Z.
- WSA-ENLIL (Ejecao de Massa Coronal (EMC) :2022-08-18T11:00Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançõu a missão DSCOVR entre 2022-08-20T20:00Z e 2022-08-21T10:00Z.
- WSA-ENLIL (Ejecao de Massa Coronal (EMC) :2022-08-19T07:30Z)
 - Os resultados das simulações indicam que o flanco da EMC alcançou a missão DSCOVR entre 2022-08-22T08:00Z e 2022-08-22T22:00Z.

Buracos coronais (SPoCA : Spatial Possibilistic Clustering Algorithm):

Figura: A linha em preto mostra o resultado da soma das areas para cada intervalo da detecção realizado pelo SPOCA entre os dias 13 e 20 de agosto de 2022

Sobre a imagem em 193 Å do Sol estão destacados os Buracos coronais observados pelo SPOCA por volta das 02:46 UT do dia 14 de agoto de 2022 (linha vermelha pontilhada).

Sobre a imagem em 193 Å do Sol estão destacados os Buracos coronais observados pelo SPOCA por volta das 02:46 UT do dia 15 de agosto de 2022 (linha azul pontilhada).

Sobre a imagem em 193 Å do Sol estão destacados os Buracos coronais observados pelo SPOCA por volta das 02:46 UT do dia 17 de agosto de 2022 (linha rosa pontilhada). ← □ → ← ♂ → ← २ → ← २ → ← ૨ → ○ २ ← ♡ २ ← ♡

もしゃ 山田 エル・ 山田 シュロッ

3 Cinturões de Radiação

3.1 Responsável: Ligia Alves da Silva

EMBRACE

<u>()</u>

Figura 1: Fluxo de elétrons de alta energia (> 2 MeV) obtido a partir dos satélites GOES-16 e GOES-17. Fonte: https://www.swpc.noaa.gov/products/goes-electron-flux

Figura 2: Dados de fluxo de elétrons de alta energia (reais e interpolados) obtidos a partir dos satélites ARASE, GOES-16, GOES-17. Dados reanalisados a partir do VERB code e do fluxo de elétrons interpolados. Dados da velocidade do vento solar e densidade de prótons obtidos a partir do satélite ACE. https://rbm.epss.ucla.edu/realtime-forecast/

O fluxo de Elétrons de alta energia (> 2 MeV) na borda do cinturão de radiação externo obtidos a partir do satélite geoestacionário GOES-16 e GOES-17 (Figura 1) apresenta-se confinado entre 10^3 e 10^4 partículas/ (cm^2ssr)) no dia 16/agosto e início do dia 17/agosto. Um leve "dropout" é observado as 03:00 UT do dia 17/agosto, seguido de um forte "dropout" que inicia-se as 17:00 UT do dia 17/agosto com mais de três ordens de grandeza. Este forte "dropout" persistiu até 12:00 UT do dia 19/agosto, seguido por uma variabilidade no fluxo de elétrons entre 10^3 e 10^2 partículas/ (cm^2ssr)), que foi observado até o final do período analisado.

Os dados dos satélites GOES-16 e GOES-17 são interpolados e assimilados no VERB code (Figure 2), o qual reconstrói este fluxo considerando a difusão radial por ondas Ultra Low Frequency (ULF). A

simulação (VERB code) mostra que o leve "dropout" observado no fluxo de elétrons atinge L-shell > 6.0, enquanto o forte "dropout" atinge L-shell > 5.0. A variabilidade no fluxo observada a partir das 12:00 UT do dia 19/agosto ocorre apenas na bora do cinturão externo de radiação, o qual coincide com o período de repopulação do cinturão em L-shells baixos.

4 Ondas ULF

4.1 Responsável: Graziela B. D. Silva

Figura 3: a) Sinal do campo magnético total medido na Estação ISLL (Island Lake) da rede CARISMA de magnetômetros em magenta, junto com a flutuação na faixa de Pc5 em azul. b-d) sinais do campo magnético total medido nas estações PVE (Porto Velho), JAT (Jataí) e CXP (Cachoeira Paulista) da rede EMBRACE de magnetômetros em magenta, junto com as respectivas flutuações na faixa de Pc5 em preto.

Figura 4: a-d) Densidade de potência espectral das flutuações do campo magnético total (δ Btotal) registradas a) na estação de alta latitude (ISLL-CARISMA), e b-d) nas estações de baixas latitudes da rede EMBRACE (PVE, JAT, CXP).

EMBRACE

O

Figura 5: a) sinal do campo magnético total medido pelo satélite GOES 16, junto com a flutuação na faixa de Pc5 em preto. b) Espectro de potência wavelet do sinal filtrado. c) Média da potência espectral nas faixas de 2 a 10 minutos (ondas ULF).

- O satélite GOES 16 em órbita geossíncrona (L ~ 6.6) registrou atividade intensa de ondas ULF Pc5 a partir de ~ 8 UT em 17/08, que permaneceu intensa até 19/08 nesses dados.
- Nas estações magnéticas em solo, houve atividade intensa de ondas ULF Pc5 registrada em ISLL

(Island Lake/US - alta latitude, L=5.15) registrada ao longo da semana, impulsionada pela tempestade de 17/08.

- Nas estações do Embrace localizadas sobre a região de baixas latitudes no Brasil, também foi observada atividade com potência significativa das ondas ao longo da semana, especialmente em PVE que é a estação mais próxima do equador magnético.
- Isso demonstra uma grande influência exercida pelas correntes do eletrojato equatorial sobre a região do equador magnético nesse evento.

5 Atividade geomagnética

EMBRACE

5.1 Responsável: Lívia Alves

Na semana de 16/08 a 21/08, destacam-se os seguintes eventos relacionados a atividade geomagnética:

- Os dados provenientes da rede de magnetômetros Embrace apresentar
am 4 tempestades durante todo o período, com destaque para 17, 19
e21/08- Os magnetômetros da rede Embrace registraram que
da na componente H para até -100 nT .
- A atividade geomagnética foi instável durante todo o período, o índice AE esteve ativo, acima de 1000 nT nos dias 17-19. O índice Dst variou até -50 nT (17/08). O Kp mais alto da semana foi de 6+.
- Campo magnético medido na órbita do satélite GOES apresentou algumas instabilidades nos dias 17 a 19/08.

Briefing semana de 16/08 à 22/08 de 2022

EMBRACE

Figura 6: As figuras de cima para baixo mostram a evolução semanal de medidas do campo geomagnético e dos índices geomagnéticos.

6 Ionosfera

6.1 Responsável: Laysa Resende

Boa Vista:

- Não ocorreu spread-F durante a semana.
- As camadas Es atingiram a escala 4 no dia 20 de agosto.

EMBRACE

Cachoeira Paulista:

- Não ocorreu spread-F durante a semana.
- As camadas Es atingiram a escala 3 nos dias 18 e 19.

EMBRACE - Digital lonosonde

São Luís:

- Ocorreu spread -F nos dias 16, 17 e 18 de agosto.
- As camadas Es atingiram a escala 4 nos dias 17 e 21 de agosto.

7 Cintilação

7.1 Responsável: Siomel Savio Odriozola

Neste reporte sobre o índice de cintilação S4, foram apresentados dados das estações SLMA em São Luiz/MA, STNT em Natal/RN, STCB em Cuiabá/MT e SJCE em São José dos Campos/SP. O índice S4 acompanha a presença de irregularidades na ionosfera quando elas têm uma escala espacial ~ 360 m. A estação SLMA apresentou um comportamento de cintilação leve no final do dia 16 com valores ao redor de 0.3 (Figura 1). O resto da semana apresentou- se sem nenhuma manifestação de eventos de cintilação. As estações UFBA e SJCE não manifestaram qualquer comportamento do S4 acima de 0.2. Finalmente, STCB, exibiu valores leves de cintilação um pouco depois do meio- dia local no dia 18 (Figura 1).

Figura 1: Valores do índice S4 para a constelação GPS medidos na estação SLMA (painel superior) e STCB (painel inferior) durante a semana 15-19/08/2022.

8 Imageador All-Sky

8.1 Responsável: LUME

All-Sky Imager EPBs Observation Observações das EPBs por meio do imageador All-Sky August 14- August 20, 2022 || 14 de agosto-20 de agosto, 2022

Observatory		August 14	August 15	August 16	August 17	August 18	August 19	August 20
Observatório		Agosto 14	Agosto 15	Agosto 16	Agosto 17	Agosto 18	Agosto 19	Agosto 20
CA		√ O*€€	√ O₩ℂ	√ ℃₩((✓ù業ℂ	√*(√ ℃>₩ℂ	√ ℃*(
BJL		×	×	×	×	×	×	×
СР		٧OC	√ O€	√∿€	√∿€	.∕ •⊾ ((✓⊷ℂ	✓҇҇҇
SMS		✓҇҇҇҇҇҇	✓҇҇҇҇҇҇	√ O⊄	✓҇҇҇҇҇҇	√ ℃₩((VO₩C	√ O*€C
Definition of Symbols								
CA	São João do Cariri							
BJL	Bom Jesus da Lapa							
CP	Cachoeira Paulista							
SMS	São Martinho da Serra							
1	Observation - Observação							
×	No Observation - Sem Observação							
0	Clear sky - Céu limpo							
0	Partly Cloudy - Parcialmente Nublado							
•	Cloudy - Nublado							
hu	Cloudy with Rain - Nublado com Chuva							
<u>*</u>	Din inga Ingan Datanda							

- No observatório de São João do Cariri foi observado bolha de plasma no dia 20.
- No observatório de Bom de Jesus da Lapa não houve observação devido a problemas técnicos.
- No observatório de Cachoeira Paulista não foi observado nenhum fenômeno geofísico durante o período.
- Por fim, no observatório de São Martinho da Serra não foi observado nenhum fenômeno geofísico durante o período.
- Foi apenas observado bolhas de plasma no dia 20 de agosto. A anomalia equatorial foi observada todos os dias.

9 ROTI

9.1 Responsável: Carolina de Sousa do Carmo

- No dia 16 de agosto de 2022, há o surgimento de irregularidades, do tipo bolha de plasma, na região equatorial do Brasil, entre às 23:00 UT e 00:00 UT de 17/08.
- No dia 20 de agosto de 2022 a presença de bolhas foi observada entre 22:00 UT e 00:00 UT de 21/08 na mesma região do país.
- O ROTI não apresentou significativas variações relacionadas com irregularidades ionosféricas no restante da semana.