

Briefing Clima Espacial

11/10/2022

1 Sol

1.1 Responsável: José Cecatto

03/10 – "Flares" M2.6, M4.2, M1.7, M1.8; Vento solar rápido (=< 600 km/s); 6 CME p.t.c. para a Terra *;

04/10 - "Flare" M1.6; Vento solar rápido (=< 600 km/s); 1 CME p.t.c. para a Terra;

05/10 - Sem "flare" M/X; Vento solar rápido (=< 550 km/s); 3 CME p.t.c. para a Terra;

06/10 - Sem "flare" M/X; Vento solar rápido (=< 550 km/s); 5 CME p.t.c. para a Terra;

07/10 – "Flare" M1.1; Vento solar rápido (=< 600 km/s); 2 CME p.t.c. para a Terra *;

08/10 - Sem "flare" M/X; Vento solar rápido (=< 550 km/s); 4 CME p.t.c. para a Terra;

09/10 - Sem "flare" M/X; Vento solar rápido (=< 600 km/s); 7 CME p.t.c. para a Terra *;

10/10 - "Flares" M1.1, M2.4; Vento solar rápido (=< 600 km/s); 3 CME p.t.c. para a Terra;

Prev.: Vento solar rápido esperado até 11 de outubro; probabilidade de "flares" (45% M, 10% X) nos próximos 2 dias;

eventualmente outras CME podem ter componente dirigida para a Terra.

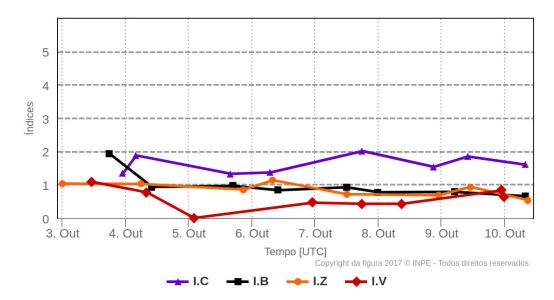
p.t.c. - pode(m) ter componente; * halo parcial; ** halo

2 Sol

2.1 Responsável: Douglas Silva

EMC (https://ccmc.gsfc.nasa.gov/donki/): WSA-ENLIL (Ejeção de Massa Coronal (EMC) : 2022-10-01T12:24Z e 2022-10-01T13:09Z)

- Os resultados das simulações indicam que o flanco da EMC alcançará a missão DSCOVR entre 2022-10-03T22:43Z e 2022-10-04T12:43Z. WSA-ENLIL (Ejeção de Massa Coronal (EMC) :2022-10-03T00:36Z)
- Os resultados das simulações indicam que o flanco da EMC alcançará a missão DSCOVR entre 2022-10-05T23:00Z e 2022-10-06T13:00Z. WSA-ENLIL (Ejeção de Massa Coronal (EMC) : 2022-10-04T14:24)
- Os resultados das simulações indicam que o flanco da EMC alcançará a missão DSCOVR entre 2022-10-06T23:00Z e 2022-10-07T13:00Z. WSA-ENLIL (Ejeção de Massa Coronal (EMC) :2022-10-07T08:23)
- Os resultados das simulações indicam que o flanco da EMC alcançará a missão DSCOVR entre 2022-10-12T00:00Z e 2022-10-12T14:00Z.



3 Meio Interplanetário

3.1 Responsável: Paulo Jauer

Resumo dos índices do meio interplanetário

Máximos diários - mais recentes entre 3 Out, 2022 e 10 Out, 2022

- A região do meio interplanetário na última semana apresentou um nível baixo a moderado nas perturbações do plasma devido à possível interação de estruturas do tipo CME e HSS identificadas pelo satélite DSCOVR no meio interplanetário.
- O modulo da componente do campo magnético interplanetário apresentou um pico 14 nT no dia 03/Out às 18:30 durante o período analisado.
- As componentes BxBy apresentaram variações no período analisado, mantendo-se ambas oscilando dentro do intervalo [+11, -11] nT, sem a presença de troca de setor.
- A componente do campo bz apresentou valor mínimo no dia $03/\mathrm{Out}$ às $18:30~\mathrm{UT}$ de -9.33nT e valor máximo de 9.14 nT no dia $03/\mathrm{out}$ às $14:30~\mathrm{UT}$. No restante do período a componente bz oscilou no intervalo [+5, -5] nT.
- A densidade do vento solar apresentou pico no dia 07/Out 18:30 de 16.56 p/cm^3 , contudo a densidade se manteve em média abaixo de 14 p/cm^3 no restante do período.
- \bullet A velocidade do vento solar manteve-se em média acima de 450 km/s com pico no dia 09/Out às 23:30 UT de 607 km/s.
- A posição da magnetopausa esteve oscilando com valor mínimo registrado no dia 07/Out às 18:30
 UT de 8.2 Re. Em média a posição da magnetopausa esteve abaixo da posição de equilíbrio

4 Cinturões de Radiação

4.1 Responsável: Ligia Alves da Silva

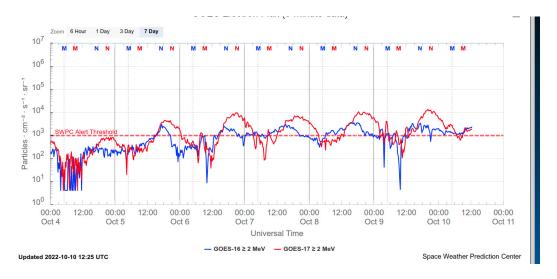


Figura 1: Fluxo de elétrons de alta energia (> 2MeV) obtido a partir dos satélites GOES-16 e GOES-17. Fonte: https://www.swpc.noaa.gov/products/goes-electron-flux

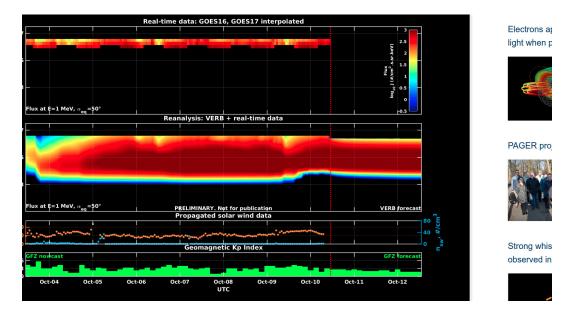


Figura 2: Dados de fluxo de elétrons de alta energia (reais e interpolados) obtidos a partir dos satélites GOES-16 e GOES-17. Dados reanalisados a partir do VERB code e do fluxo de elétrons interpolados. Dados da velocidade do vento solar e densidade de prótons obtidos a partir do satélite ACE. Fonte: https://rbm.epss.ucla.edu/realtime-forecast/

O fluxo de Elétrons de alta energia (> 2 MeV) na borda do cinturão de radiação externo obtidos a partir do satélite geoestacionário GOES-16 e GOES-17 (Figura 1) apresenta um "dropout" rápido no início dia 4/outubro, seguido de um aumento de fluxo de elétrons a partir da 12:00 UT do mesmo dia. Observa-se que o fluxo de elétrons ultrapassa 10^3 partículas/ (cm^2ssr) a partir das 15:15 UT do dia 05/outubro, permanecendo preferencialmente entre 10^3 e 10^4 partículas/ (cm^2ssr) até o final do período analisado. Nos dias 6 e 9 de outubro os "dropouts" atingem 10^1 partículas/ (cm^2ssr) , retornando rapidamente aos seus respectivos níveis anteriores.

Os dados dos satélites GOES-16 e GOES-17 são interpolados e assimilados no VERB code (Figure 2), o qual reconstrói este fluxo considerando a difusão radial por ondas Ultra Low Frequency (ULF).

A simulação (VERB code) mostra que os "dropouts" observados nos dias 4 e 9 de outubro atingiram L-shells mais internos, enquanto o "dropout" observado em 6/outubro atingiu L-shell>6.0. As variabilidades no fluxo coincidem com a chegada de estruturas do vento solar e atividades de ondas ULF.

5 Ondas ULF

5.1 Responsável: Graziela B. D. Silva

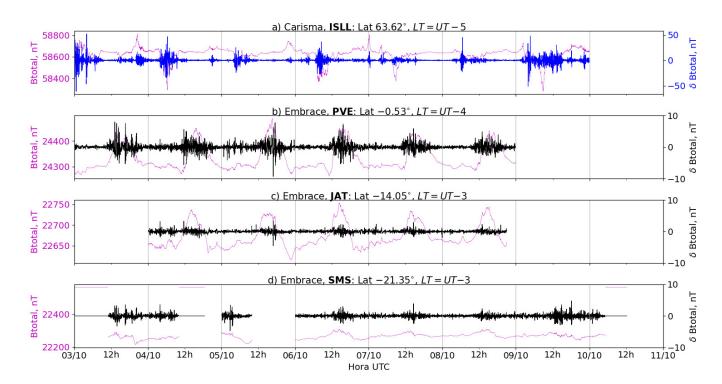


Figura 3: a) Sinal do campo magnético total medido na Estação ISLL (Island Lake) da rede CARISMA de magnetômetros em magenta, junto com a flutuação na faixa de Pc5 em azul. b-d) sinais do campo magnético total medido nas estações PVE (Porto Velho), JAT (Jataí) e SMS (São Martinho da Serra) da rede EMBRACE de magnetômetros em magenta, junto com as respectivas flutuações na faixa de Pc5 em preto.

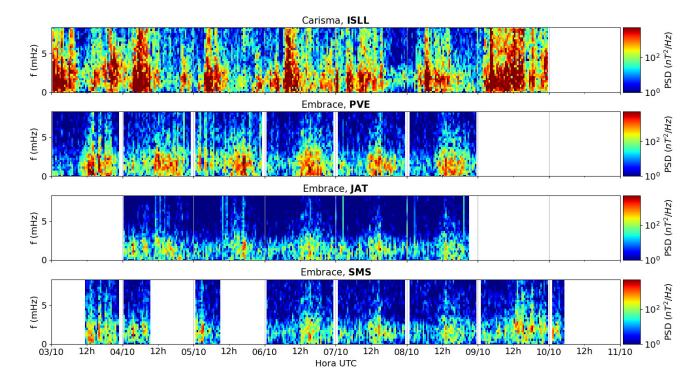


Figura 4: a-d) Densidade de potência espectral das flutuações do campo magnético total (δ Btotal) registradas a) na estação de alta latitude (ISLL-CARISMA), e b-d) nas estações em baixas latitudes da rede EMBRACE (PVE, JAT, SMS).

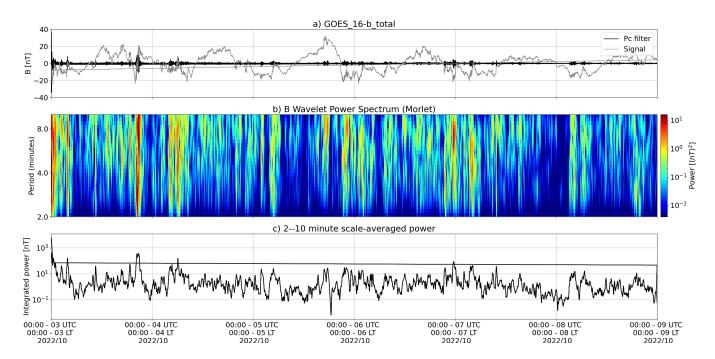
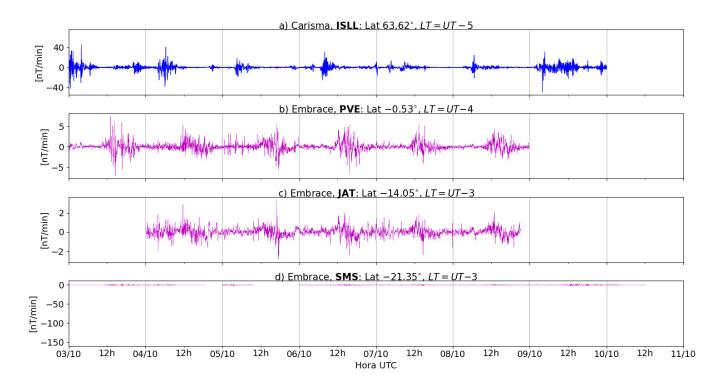
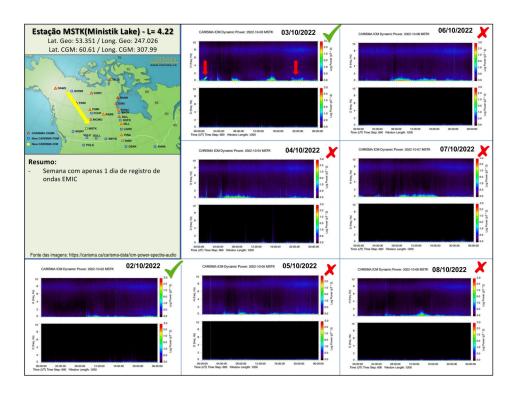


Figura 5: a) sinal do campo magnético total medido pelo satélite GOES 16, junto com a flutuação na faixa de Pc5 em preto. b) Espectro de potência wavelet do sinal filtrado. c) Média da potência espectral nas faixas de 2 a 10 minutos (ondas ULF).

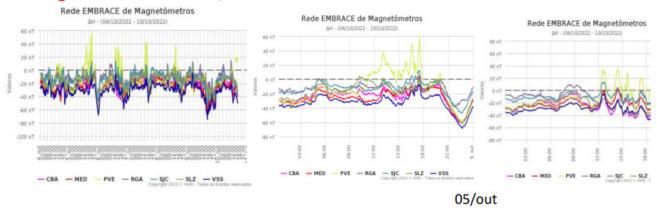


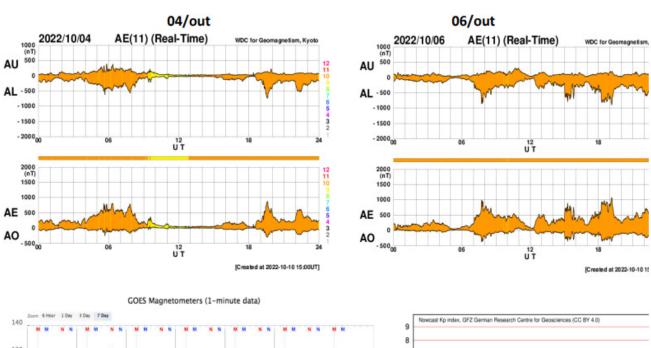

Figura 6: a-d) Taxa de variação do campo magnético total (dB/dt) registradas a) na estação de alta latitude (ISLL-CARISMA), e b-d) nas estações de baixas latitudes da rede EMBRACE (PVE, JAT, SMS).

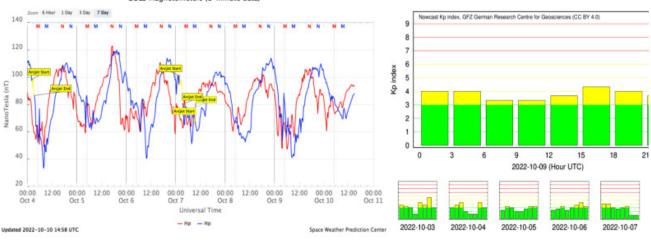
- O campo geomagnético medido pelo satélite GOES 16 em órbita geossíncrona (L \sim 6.6) apresentou atividade significativa de ondas ULF ao longo de toda a semana (03 a 08/10).
- As estações em solo registraram atividade intensa e contínua de ondas ULF ao longo de toda a semana (entre 03 e 10/10), embora as estações do Embrace foram afetadas por múltiplos intervalos de gaps nos dados.
- Nota-se um forte efeito do eletrojato equatorial na atividade de ondas em PVE.
- Taxas de dB/dt n\(\tilde{a}\) o utltrapassaram 40 nT/min em ISLL (rede CARISMA) e estiveram abaixo de ~ 5 nT/min nos dados magn\(\tilde{t}\) icos da rede Embrace.

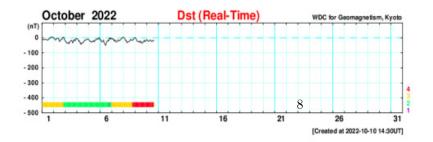
6 Ondas EMIC

6.1 Responsável: Claudia Medeiros

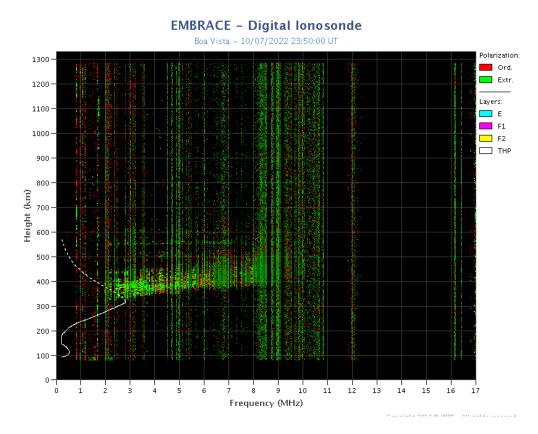

7 Atividade geomagnética


7.1 Responsável: Lívia Alves


Na semana de 03 a 10/10, destacam-se os seguintes eventos relacionados à atividade geomagnética:


- Os dados provenientes da rede de magnetômetros Embrace registraram atividade geomagnética no período, com detaque para 05,06 e 09/09. Os magnetômetros da rede Embrace registraram queda na componente H.
- O índice AE esteve ativo, variando acima de 500 nT nos dias 04,06 e 09/10. O índice Dst variou até -50 nT (06/10). O Kp mais alto da semana foi 4+.
- A atividade auroral foi intensificada durante toda a semana.
- Campo magnético medido na órbita do satélite GOES apresentou algumas instabilidades ao longo de toda a semana.

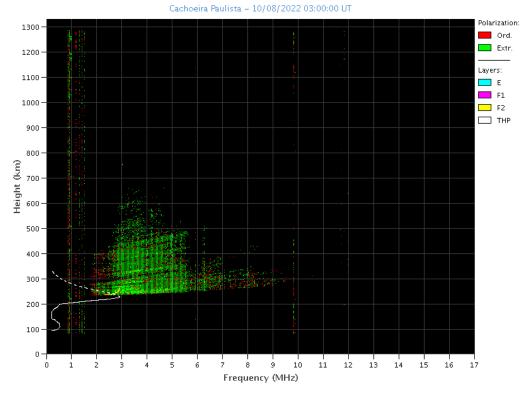
Briefing semana de 04 à 10/10 de 2022



8 Ionosfera

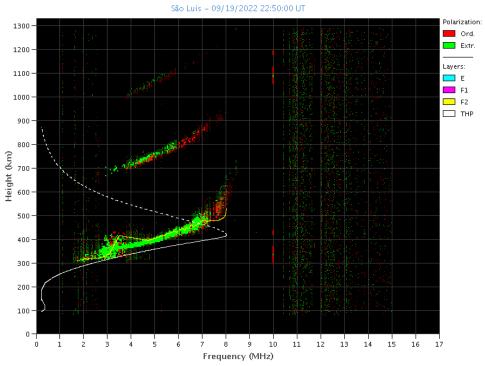
8.1 Responsável: Laysa Resende

Boa Vista:


- Ocorreu spread-F a nos dias 07, 08 e 09.
- As camadas Es atingiram a escala 2 durante a semana.

Cachoeira Paulista:

- Ocorreu spread-F a no dia 09.
- As camadas Es atingiram a escala 2 durante a semana.


EMBRACE - Digital Ionosonde

São Luís:

- Ocorreu spread -F durante a semana.
- As camadas Es atingiram a escalas 2 no dia 03.

EMBRACE - Digital Ionosonde

9 Cintilação

9.1 Responsável: Siomel Savio Odriozola

Neste reporte sobre o índice de cintilação S4, foram apresentados dados das estações SLMA em São Luiz/MA, UFBA em Salvador/BA, STCB em Cuiabá/MT e SJCE em São José dos Campos/SP. O índice S4 acompanha a presença de irregularidades na ionosfera quando elas têm uma escala espacial ~ 360 m. Cintilação forte e severa foi registrada em SLMA, STCB e UFBA durante quase toda a semana do 02 ao 10 /10 (excetuando o dia 3) como mostra a Figura 1. A partir desta Figura, pode ser constatado uma ausência de cintilação durante a noite e do dia 3 e primeiras horas do dia 4. Isto pode ser consequência de um processo de supressão do mecanismo pelo qual a bolha de plasma é formada. O horário após a pôr do sol do dia 7 manifestou, em todas as estações analisadas, o evento mais intenso e duradouro de cintilação da semana reportada neste resumo (Figura 2).

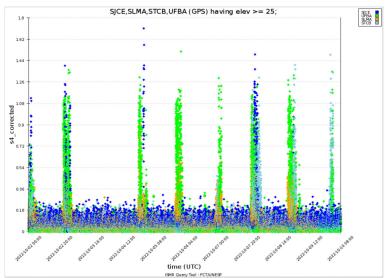


Figura 1: Valores do índice S4 para a constelação GPS medidos nas estações SLMA, UFBA, STCB e SJCE durante a semana 02/10—10/10.

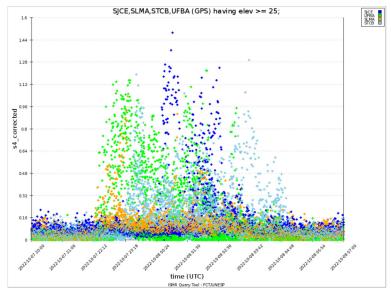


Figura 2: Valores do índice S4 para a constelação GPS medidos na estação SLMA, UFBA, STCB e SJCE entre as 20UT do dia 07 até as 07UT do dia seguinte.

10 Imageador All-Sky

10.1 Responsável: LUME

All-Sky Imager EPBs Observation Observações das EPBs por meio do imageador All-Sky October 02 - October 08, 2022 || 02 de outubro - 08 de outubro, 2022

Obser	rvatory	October 02	October 03	October 04	October 05	October 06	October 07	October 08
Obser	vatório	outubro 02	outubro 03	outubro 04	outubro 05	outubro 06	outubro 07	outubro 08
CA		100	√• ○	√ ७0	✓• ○	✓• ○	✓• ○	×
BJL		×	×	×	×	×	×	×
CP		√• ○	√ •○	✓• ○	√ ७0	✓• ○	×	×
SMS		100	100	VOO	✓• ○	✓• ○	×	×
Definition of Symbols								
CA	São João do Cariri							
BJL	Bom Jesus da Lapa							
CP	Cachoeira Paulista							
SMS	São Martinho da Serra							
1	Observation - Observação							
X	No Observation - Sem Observação							
0	Clear sky - Céu limpo							
0	Partly Cloudy - Parcialmente Nublado							
•	Cloudy - Nublado							
m	Cloudy	Cloudy with Rain - Nublado com Chuva						
*	Blur im	Blur image - Imagem Desfocada						

- No observatório de São João do Cariri, foi observado bolha de plasma nos dias 02 e 04 de outubro.
- No observatório de Bom de Jesus da Lapa, não houve observação devido a problemas técnicos.
- No observatório de Cachoeira Paulista, não foi observado nenhum fenômeno geofísico.
- Por fim, no observatório de São Martinho da Serra, não foi observado nenhum fenômeno geofisico.

TEC

• Entre os dias 02 de outubro e 08 de outubro de 2022, os mapas de TEC apresentam assinatura de bolhas de plasma. Além disso, durante esse período é observada a anomalia equatorial durante o dia e parte da noite no hemisferio sul magnético.

11 ROTI

11.1 Responsável: Carolina de Sousa do Carmo

Na semana 2230 (2 a 8 de outubro de 2022) houve a presença de irregularidades ionosféricas, do tipo bolha de plasma, em todos os dias analisados, conforme mostra a Tabela 1. Porém, na noite do dia 03 para o dia 4 de outubro não houve a presença de bolha de plasma. Além disso, a Figura abaixo mostra a série temporal do ROTI para quatro estações no setor brasileiro (Natal (RNNA), São Luis (SALU), Cuiabá (CUIB) e São José dos Campos (SJSP)). Esta figura mostra a supressão de bolha de plasma na noite do dia 3 para o dia 4, em todas as estações.

Domingo	02/10/2022	00-05:00; 22:00-24:00
Segunda-feira	03/10/2022	00:00-04:00
Terça-feira	04/10/2022	22:00-24:00
Quarta-feira	05/10/2022	00:00-04:00; 22:00-24:00
Quinta-feira	06/10/2022	00:00-03:00; 23:00-24:00
Sexta-feira	07/10/2022	00:00-05:00; 21:30-24:00
Sábado	08/10/2022	00:00-05:00; 22:00-24:00

Tabela 1: Resumo da semana (2-8 de outubro de 2022).

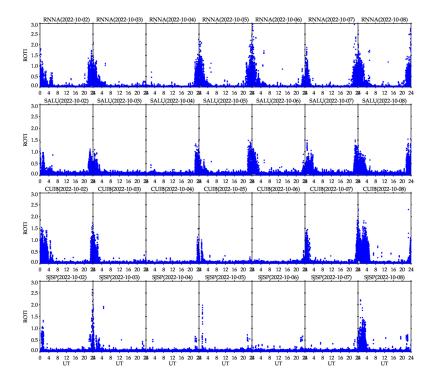


Figura 8: Série temporal do ROTI para quatro estações no setor brasileiro (Natal (RNNA), São Luis (SALU), Cuiabá (CUIB) e São José dos Campos (SJSP)), dos dias 2 até 8 de outubro de 2015.