Briefing Space Weather

EMBRACE

2022/10/04

1 Sun

1.1 Responsible: José Cecatto

09/26 – No flare (M/X); Fast wind stream (=<550 km/s); 4 CME c.h.c. toward the Earth *; 09/27 – No flare (M/X); Fast wind stream (=<550 km/s); 7 CME c.h.c. toward the Earth; 09/28 – No flare (M/X); Fast wind stream (=<550 km/s); 7 CME c.h.c. toward the Earth; 09/29 – No flare (M/X); Fast wind stream (=<450 km/s); 4 CME c.h.c. toward the Earth *; 09/30 – M1.1, M3.0 flares; Fast wind stream (=<500 km/s); 3 CME c.h.c. toward the Earth; 10/01 – M5.9 flare; Fast wind stream (=<450 km/s); 4 CME c.h.c. toward the Earth; 10/02 – M8.7, X1.0 flares; Fast wind stream (=<600 km/s); 4 CME c.h.c. toward the Earth *; 10/03 – M2.6, M4.2, M1.5 flares; Fast wind stream (=<600 km/s); 4 CME c.h.c. toward the Earth *; Prev.: Fast wind stream expected up to October 04; for the next 2 days (70% M, 30% X) probability of M / X flares;

also, occasionally other CME can present component toward the Earth. c.h.c. – can have a component; * partial halo; ** halo

2 Interplanetary Medium

2.1 Responsible: Paulo Jauer

Resumo dos índices do meio interplanetário

Máximos diários - mais recentes entre 19 Set, 2022 e 26 Set, 2022

• The interplanetary medium region in the last week showed a low/moderate level of plasma perturbations due to the possible interaction of CME and HSS-like structures identified by the DSCOVR satellite in the interplanetary medium.

• The modulus of the interplanetary magnetic field component peaked at 10 nT on 23/Sep at 00:30 during the analyzed period.

(

- The BxBy components showed variations in the analyzed period, both remaining oscillating within the [+15, -15] nT interval, with the presence of sector switching on September 22, 23 and 24 at 09:30, 09:30 and 04:30 UT respectively.
- The component of the bz field presented a minimum value on Sep/23 07:30 UT of -6.6nT. On average, the component oscillated in the range of [+6, -6] nT.
- The solar wind density peaked at 16.4 p/cm^3 on 23/Sep 02:30, however the density remained below 10 p/cm^3 in the rest of the period.
- The solar wind speed remained mostly above 400 km/s during the analyzed period, changing its direction on September 25 at 00:30 UT.
- The magnetopause position was oscillating with a minimum value recorded on September 19 at 00:30 UT of 8.7 Re. The magnetopause showed a maximum expansion on 25/Sep at 16:30 of 12.8 Re.

3 Radiation Belts

3.1 Responsible: Ligia Alves da Silva

EMBRACE

Figura 1: High-energy electron flux (> 2MeV) obtained from GOES-16 and GOES-17 satellite. Source: https://www.swpc.noaa.gov/products/goes-electron-flux

0

EMBRACE

Figura 2: High-energy electron flux data (real-time and interpolated) obtained from GOES-16 and GOES-17 satellites. Reanalysis's data from VERB code and interpolated electron flux. Solar wind velocity and proton density data from ACE satellite. Source:https://rbm.epss.ucla.edu/ realtime-forecast/

High-energy electron flux (> 2 MeV) in the outer boundary of the outer radiation belt obtained from geostationary satellite data GOES-16 and GOES-17 (Figure 1) shows variability, which becomes practically imperceptible because this flux is confined below 10^2 particles/(cm2ssr) until 10:45 UT on October 3rd. This is possibly associated with the arrival of a coronal mass ejection (CME).

The GOES-16 and GOES-17 satellite data are interpolated and assimilated into the VERB code (Figure 2), which reconstructs this electron flux considering the Ultra Low Frequency (ULF) waves' radial diffusion. The simulation (VERB code) shows that the variabilities seem more significant, especially on October 27th and 28th, when the dropouts reached more internal L-shells. The reformation of the outer belt in more inner shells is observed from the end of October 2nd. This may also be associated with the arrival of a CME. The electron flux variabilities coincide with the arrival of solar wind structures and ULF wave activity.

4 ULF waves

4.1 Responsible: Graziela B. D. Silva

Figura 3: a) Timeseries of the geomagnetic field total component measured at ISLL station (Island Lake) of the CARISMA magnetometer network in magenta, along with the associated perturbation in the Pc5 band shown in blue. b-d) timeseries of the geomagnetic field total component measured at stations PVE (Porto Velho), ARA (Araguatins), and CBA (Cuiabá) of the EMBRACE network in magenta, along with the Pc5 perturbation in blue.

EMBRACE

Figura 4: a-d) Time evolution of the power spectral density obtained from the filtered timeseries of the geomagnetic field total component (δ Btotal) for a) the high latitude station (ISLL-CARISMA), and b-d) for the low latitude stations of EMBRACE (PVE, ARA, CBA).

Figura 5: a) Timeseries of the geomagnetic field total component measured by GOES 16, together with the Pc5 fluctuation in black. b) Wavelet power spectrum of the filtered timeseries. c) Average ULF power in the period range from 2 to 10 minutes.

Figura 6: a-d) The rate of change of the geomagnetic field total component (dB/dt) obtained for a) the high latitude station (MCMU-CARISMA), and b-d) for the low latitude stations of EMBRACE (PVE, JAT, CBA).

- The GOES 16 satellite in geosynchronous orbit (L ~ 6.6) registered significant activity of Pc5 ULF waves on September 27 throughout the day, and also between on Sep. 29 and 30.
- As observed on the ground, the four stations both from high and low latitudes registered an intense ULF wave activity on Sep. 27, which started at the end of Sep. 26. Meanwhile, the total component of the geomagnetic was observed to decrease in all stations.
- The levels of wave activity remained elevated over the week days until October 2.
- The peaked and prolonged dB/dt signals observed from high to low latitudes were highly influenced by the ULF wave activity reported above.

5 EMIC waves

5.1 Responsible: Claudia Medeiros

EMBRACE

6 Geomagnetic activity

6.1 Responsible: Lívia Alves

In the week of September 27 to October 3, the following events related to geomagnetic activity stand out:

- The data from the Embrace magnetometer network registered instabilities in Sep. 27.
- On Sep. 24, the magnetometers of the Embrace network recorded a significant drop in the H component.
- The geomagnetic field was active, the AE index was at 500 nT for several hours on Sep. 30 and Oct. 3. The Dst index reached -47 nT. The highest Kp of the week was 4-.
- The geomagnetic field measured at the GOES orbit shows instabilities on Sep. 27.

20/cat 2022/09/30 AE(11) (Real-Time) 1000 (nT) 500 AU AL - 500 - 1000 - 1500 - 2000 12 U T 2000 (nT) 1500 1000 AE 500 AO______00 0 12 U T at 2022-10-03 15:10UT]

red 2022-10-01 17:19 UTO

2022-09-30

2022-10-01

2022-1

Figura 7: The figures from top to bottom show the weekly evolution of the H magnetic field component measured by the Embrace network, of the auroral AE index, of the geomagnetic field measured by the GOES satellites at $L \sim 6.6$ on the left, along with the Kp index on the right hand side. The bottom most figure contains the Dst index time series.

7 All-Sky Imager

7.1 Responsible: LUME

All-Sky Imager EPBs Observation Observações das EPBs por meio do imageador All-Sky September 25 - October 01, 2022 || 25 de setembro - 01 de outubro, 2022

Observatory		September 25	September 26	September 27	September 28	September 29	September 30	October 01
Observatório		Setembro 25	Setembro 26	Setembro 27	Setembro 28	Setembro 29	Setembro 30	Outubro 01
\mathbf{CA}		√⊙	√∿	√∿	√∿	√∿	√∿	√∿
BJL		×	×	×	×	×	×	×
\mathbf{CP}		×	×	×	×	×	×	×
\mathbf{SMS}		×	×	×	×	×	×	×
Definition of Symbols								
$\mathbf{C}\mathbf{A}$	São João do Cariri							
\mathbf{BJL}	Bom Jesus da Lapa							
\mathbf{CP}	Cachoeira Paulista							
\mathbf{SMS}	São Martinho da Serra							
1	Observation - Observação							
×	No Observation - Sem Observação							
0	Clear sky - Céu limpo							
0	Partly Cloudy - Parcialmente Nublado							
•	Cloudy - Nublado							
444	Cloudy with Rain - Nublado com Chuva							
*	Blur image - Imagem Desfocada							

- At the Sao Joao do Cariri observatory, plasma bubble was observed be- tween the September 25 and October 01.
- At the Bom de Jesus da Lapa observatory there was no observation due to technical problems.
- At the Cachoeira Paulista observatory there was no observation due to technical problems.
- Finally, at the observatory of Sao Martinho da Serra observatory there was no observation due to technical problems.

7.2 TEC

• Between September 25th and October 1st, 2022, TEC maps showed plasma bubbles. In addition, during this period, the equatorial anomaly is observed during the day and part of the night in the magnetic southern hemisphere.

8 ROTI

8.1 Responsible: Carolina de Sousa Carmo

In the week 2229 (September 25 to October 1, 2022) there were ionospheric irregularities (plasma bubble), on all analyzed days, as shown in Table 1. However, on September 30th and October 1st there was not enough data to make the ROTI maps. In addition, Figure 1 shows an example of the plasma bubble occurrence on September 26, 2022, using keograms at -5° and 15° latitude.

Sunday	2022/09/25	00-05:00; 22:30-24:00
Monday	2022/09/26	00:00-04:00; 22:00-24:00
Tuesday	2022/09/27	00:00-06:00; 22:30-24:00
Wednesday	2022/09/28	00:00-05:00; 22:00-24:00
Thursday	2022/09/29	00:00-04:00; 21:30-24:00
Friday	2022/09/30	No data
Saturday	2022/10/01	No data

Tabela 1: Oct 1, 2022).

Figura 8: Keogram of September 26, 2022, for latitudes of -5° and 15°